
CS231A Find Mii Project

Allan Joshua
Stanford University

allan84@stanford.edu

Dylan Shinzaki
Stanford University

shinzaki@stanford.edu

Abstract

This paper details an attempt to automate the Find Mii
challenge. We use several techniques like face detection,
face recognition and other computer vision algorithms. We
attempt to construct algorithms that are capable of: iden-
tifying a given avatar in a group of avatars; identifying
two look-alike avatars in a group of avatars; identifying an
avatar whose behavior differs from that of the rest of the
avatars in a group and identifying the fastest moving avatar
in a group of avatars. Each of these tasks has three levels of
difficulty easy, medium and hard where each of the levels
pose unique algorithmic challenges.

1. Introduction

Recognizing particular objects in a scene, finding the odd
ones out of a group and isolating the fastest moving object
are all problems which extend to several real world appli-
cations. The objective of this project is to leverage these
and build an agent to automatically play the popular video
game Find Mii. The goal is to accomplish several tasks at
increasing levels of difficulty by performing a set of opera-
tions using faces of Wii digital avatars (colloquially called
a ”Mii”) extracted from a video stream by processing the
fewest number of frames as possible. There are several
problems which manifest themselves as the level of diffi-
culty increases which ought to be solved efficiently. Scal-
ing, translation, rotation, occlusion and motion detection
are a few worth mentioning. In this paper, we detail the
way we propose to solve each of these problems. We split
the video stream as a sequence of frames and use several
computer vision techniques to perform these tasks. We use
Matlab and OpenCV for the implementation of these algo-
rithms.

1.1. Find Mii

To successfully play Find Mii we must accomplish four
tasks at varying levels of difficulties which comprise of :
Identifying a particular face in a scene, identifying a pair

of similar avatars from a group, identifying the odd avatars
out of a group and identifying the fastest moving avatar.
There are three levels of difficulties for each task which in-
troduce new challenges like rotational variance, partial oc-
clusion and scaling. Our System effectively solves ten of
the twelve tasks. The technical approach we took will be
explained in the following sections.

2. Background and Related Work

It was beneficial to use a few off-the-shelf implementa-
tions available and customize them for the project needs.
The Find this Mii task could be accomplished by using
Scale-invariant Feature Transform (SIFT) [1] and a deriva-
tive approach using Speeded Up Robust Features (SURF)
[2]. SURF is a high-performance scale and rotation-
invariant interest point detector and descriptor claimed
to approximate or even outperform previously proposed
schemes with respect to repeatability, distinctiveness and
robustness. It relies on integral images for image convo-
lutions to reduce computation time, builds on the strengths
of the leading existing detectors and descriptors (using a
fast Hessian matrix-based measure for the detector and a
distribution-based descriptor). The Find 2 look-alikes task
requires a face detection algorithm. Multiple approaches
exist for detecting human faces. Viola and Jones accom-
plished human face detection using Adaboost and Haar
wavelets [3]. Rowley, Baluja, and Kanade used neural net-
works [4]. Mii faces differ from human faces in some as-
pects. More generic object detection approaches could be
applied to detect face-like objects such as Mii faces. [5, 6]
proposed a method for training-free object detection based
upon locally adaptive regression kernels (LARK) to detect
novel objects which are similar to an image of a query ob-
ject. Since the Find n odd Miis and the Find the fastest
Mii tasks involve motion detection, sparse optical flow [7]
was chosen and to pick features for optical flow the Shi and
Tomasi, good Features to track [8] algorithm was used.



Figure 1. Example Feature Matches

Figure 2. Hough Transform on the accumulated points leads to a
good click but the solution does not generalize well.

3. Technical Approach and Experiment
3.1. Task1: Find This Mii

We propose to use the SURF interest point detector / de-
scriptor with the intent of matching the avatar on the ref-
erence image to the specific location of the same avatar
on the extracted video frame. The local features extracted
would be robust to scaling, translation, rotation and occlu-
sion. However, considering the number of interest points
detected and the fact that the difference in the gradient along
the x-axis and the y-axis for all of the Miis faces being quite
similar, the good matches even after applying a threshold
were still not discriminative enough to be confident to click.
Although the number of feature matches as shown in fig-
ure 1 might suffice to pick the correct Mii by running a
hough transform [9] in this case (see figure 2), it did not
generalize well. On trying out other reference images on
the same video, the algorithm performed poorly. To com-
bat this, we loop through each of the frames up to a specific
threshold and keep accumulating the good feature matches.
Once we are confident that we have enough frames, we run
Ransac [10] and compute the homography matrix. Once
we have the homography matrix, we compute the center of
the reference image and find the corresponding point on the
frame which is our click point. Although the number of fea-

Figure 3. Final Click for Task1 Level2.

Figure 4. BackGround Subtraction.

tures on the video frame is quite large OpenCV’s FLANN
based matcher (Fast Approximate Nearest Neighbor Search
Library) was very effiecient in finding the good matches.

This approach worked well for both levels 1 and 2 (refer
figure 3). There were several interest points being picked
from the background on level 3. The matching of inter-
est points was so noisy that it was really hard to get good
matches. One way we tried to combat this is to apply back-
ground subtraction and pick only the foreground. Refer fig-
ure 4.

After applying Background subtraction we compute the
SURF descriptors of this image and compare this with the
descriptors of the other image. We continue to pick multi-
ple frames with the background removed and eventually run
Ransac to compute the homography matrix. This brought
down a lot of false matches.

3.2. Task2: Find 2 Look-alikes

The high level approach of solving this task is described
below.



Figure 5. Example face detection with LARK detector

1. Using a face detector to locate the possible faces

2. Use SIFT to generate descriptors for the facial regions

3. Use the SIFT descriptors to match areas find the most
similar facial regions.

3.2.1 Facial detection

The facial detection portion of the algorithm used a training-
free generic object detector based upon LARKs. [6] and
[5] proposed such an object detector and provided code to
implement the detector. Given a query image, the detector
identifies similar objects. For this task, an image of a human
face was included with for the purposes of face detection. It
also had good results when applied to scenes with Mii faces.
An example of this can be seen in Figure 5.

This approach has the advantages of requiring no prior
training and limited assumptions with regards to the Mii’s
appearance

3.2.2 Features

The SIFT portion of this task was accomplished using the
MATLAB version of the VLFeat library [11]. This library
was used to extract 128-dimension SIFT descriptors from
each frame in the input video. The descriptors in a given
frame were grouped based upon the detected face boxes.
Any descriptor that was not located in a box was eliminated.
An example of this step can be seen in Figures 6 and 7.

3.2.3 Heuristics

The approach described above acted as the basis for execu-
tion of Task 2 at all three levels of difficulty. A number of
heuristics were added to improve the performance at higher
difficulties.

Figure 6. Example SIFT features

Figure 7. Example SIFT features with the face boxes

One heuristic is based upon the assumption that the
movement of the Mii faces between frames was small com-
pared to the size of the head and ground truth associated
with it. For small n, groups of n consecutive frames could
be treated as if they were the same frame. This expanded the
previously described approach by allowing for the matching
of bounding boxes that are not in the same frame. For exam-
ple, it is possible to match between bounding box i in frame
t with bounding box j in frame t+n when n is small. Face
detection boxes and SIFT descriptors were extracted from n
consecutive frames. For every bounding box pair i and j in
the n frames, the SIFT features matches and the similarity
measure were calculated in the same way. To assure that
the matching is not taking place on the same face in differ-
ent frames, a bounding box pair had to be at least m pixels
apart. m = 50 was used in the code.

This heuristic was useful because it provided more pos-
sible matches for a bounding box. This made the feature
matching more robust to possible disruptions such as a com-
plicated background or low Mii face quality. Figure 8 shows
an example output for the original, 1 frame algorithm for
level 3. Figure 9 shows an example output with the heuristic



Figure 8. Output for frame groups of size 1

Figure 9. Output for frame groups of size 4

when n = 4. A downside of this heuristic is that it generally
required more frames to operate. At a result, it was deemed
unnecessary for level 1.

A second heuristic was used to limit false positives. Any
match found by the algorithm was considered a candidate
click. A candidate click would only be returned if k ”simi-
lar” candidate clicks had been found in the past. The code
used k = 1 and classified similar clicks as being within 100
pixels. This increased the number of frames consumed but
greatly reduced the false positive rate. This was deemed a
good trade off given the penalty of an incorrect answer ver-
sus the penalty of using more frames.

3.3. Task 3: Find n odd Mii’s out

The problem in task 3 is to identify the odd Miis out from
a video stream of Miis. The oddity in movement involves
the Miis turning or moving their heads, where a few Miis
are turning or moving their heads in the opposite direction
in comparison with the other Miis. Since this task involves
detecting motion, we chose to use the optical flow method.

Figure 10. This image represents an active frame in an active win-
dow. Note that the majority of interest points are move in one
direction and only a very few are oriented towards the opposite
direction.

We use the sparse optical flow [7] method in OpenCV.
Optical flow attempts to detect motion within a scene by
tracking individual features across frames. We use sparse
optical flow instead of dense optical flow because of the in-
creased efficiency provided by sparse optical flow. OpenCV
provides an implementation of sparse optical flow, as well
as a function that returns good features to track [8] for a
particular frame.

In order to solve task 3, we apply optical flow to compare
each frame to the frame two frames ahead of it. The optical
flow algorithm, combined with the good-features-to-track
method, yields a set of point correspondences between the
two images. We then filter the point correspondences, re-
moving pairs of points that are too far apart, which signals
an error in the optical flow results and pairs of points that
are too close together, which signals a lack of movement.
We use the points to compute the angle of displacement.
Since we are given a biased assumption that the Mii’s turn
their head horizontally, we pick only the points which have
been displaced horizontally. This thresholding specifically
picks the points that we are interested in.

One of the key observations is that the there is a period of
activity which we define as an ”active window”. The Mii’s
move all at once and then stop for a while. After the period
of inactivity, they again move all at once. We leverage this
to pick points during this ”active window”. The threshold-
ing that we have done would help with picking the specific
feature points which move. During an ”active window”,
since all of the Mii’s turn their head, there would be a much
higher number of feature points which would pass through
our filter in comparison to an inactive frame. An active win-
dow might last just a few frames. During this period most
of the feature points would be moving in one direction and



Figure 11. This image represents the accumulated points at the end
of an active window. These are the most likely locations that could
be clicked.

a very few would be moving in the opposite direction. The
fig 10 shows a snapshot of Task 3 Level 1 on an active frame
in an active window.

We do not just pick the points from one frame. We ac-
cumulate the points throughout the ”active window”. Our
stop criteria is when the number of feature points drop dras-
tically. This sudden drop in feature count which satisfy our
filter would indicate that the video has gone back into an
”inactive window”. At this juncture we will have accumu-
lated the most likely points which could be clicked. We
only accumulate the points which were moving in the op-
posite direction.

Figure 11 represents the accumulated points at the end
of an active window. At this time we have the most likely
points that could be clicked.

The original plan was to use a clustering algorithm to find
the cluster centroids. Since we know the number of clicks,
initializing of K-means would not be an issue. K-means,
however, was not very robust to outliers and the noise in
this case was way too much for it to come up with the proper
cluster centroids that we wanted.

The next option that was tried was a mixture of gaussian
model expectation maximization but this did not give proper
results either. Mean-shift was considered but we realized
that it was not going to give the proper output either. The
final solution was a hough transform in a 2d space. Hough
transform was very robust to noise and since most of the
votes would be for the most likely Mii faces, it came out
with the proper click points.

The algorithm as a whole was very abstract that it was
easily portable to Level2. One of the problems which was

Figure 12. The feature points on the darker Mii’s not being picked
up.

faced during the implementation of level 2 was the fact that
feature points on darker Mii’s were not getting picked up.
It was intuitively obvious that the gradient change was so
minimal that those points were not picked up. Figure 12
depicts this. The way this was solved was by parameterizing
the good-features-to track algorithm to pick 10 times more
features than it originally did and adjusting the threshold
accordingly. Both levels 1 and 2 worked well.

We were not able to come up with an algorithm for Task3
Level 3.

3.4. Task 4: Find the Fastest Mii

The stated problem in task 4 is to identify the fastest mov-
ing Mii among a group of Miis within a video stream. As in
task 3, we approach this problem using optical flow. Unlike
task 3, where detecting motion over a short time is suffi-
cient, in task 4, it is necessary to detect continuous motion
over a long period of time. The reason for this is that many
objects within the scene, such as the Miis hands, could be
moving faster than the fastest Mii over short periods of time.
Unfortunately, the optical flow algorithm is not very robust
when calculated between two frames that are far apart in
time. Therefore, we try to track features across time by
tracking them between adjacent frames using the optical
flow algorithm.

One of the initial thoughts was to follow the points. We
intended to use the good-features-to-track algorithm [8] to
pick the points in one frame. We then intended to get the
new locations (the ones these points would have traveled to,
after one round of forward optical flow) and use those as
the features to send into Lucas kanade [7] to compute the
flow for the next frame which would give the locations on
the frame after that and so on. Doing this would help in
figuring out how far a particular feature point had traveled.



Figure 13. Velocity vectors of all of the points.

We could then use that information to figure out the points
which have moved the farthest.

The biggest disadvantage of this method is that with op-
tical flow, it is not guaranteed that we would find a point on
the next frame. The error level was way too much that it
was hard to follow the points over just a few frames. We
could trace it as much as we can and then resort to getting
the average based on the number of frames. But the problem
with this approach is that we would not know which point
to click. Although we might know which frame this feature
point is at, it might not be the last frame. Since we cannot
access any frame after clicking, this method did not seem
like a viable solution. One other alternative was to use the
Camshift algorithm to track the group of points which are
close to each other and moving the fastest. We could figure
out which set of points have moved the most and then try
to apply Camshift to track it along to obtain the click point.
This did not end up working well.

The other alternative we tried was to use the dense opti-
cal flow to get the velocity vectors. Fig 13 shows the veloc-
ity vectors of all of the points (not just the feature points).
This alternative was promising because the features picked
across different frames were not the same and there is a pos-
sibility that a feature picked in this frame will not get picked
in the next one by the Shi and Tomasi algorithm [8] . Al-
though this seems like a good option we still resorted to
solving the problem using sparse optical flow.

We used an approximation. We segmented the image into
small boxes as shown in Fig 14. We start off in a frame and
use the Shi and Tomasi algorithm [8] and run optical flow.
We pick the points by thresholding like we did for Task3.
We maintain a cumulative belief net. The belief net will
have the distance traveled by the feature points as values.
From the second frame onward we use something very sim-

Figure 14. The green circles represent the current location and the
blue circles represent the location that it was in, in the previous
frame

ilar to a Markov assumption. The location of this feature
point in this frame is only dependent on the location of this
feature point in the previous frame and is independent of
everything before it. If we are in the second frame, we pick
feature points of this frame using the Shi and Tomasi algo-
rithm [8]. We then use these feature points and track it one
frame backwards.

This would give us the location of this feature point in
the previous frame. Since we have discretized the image as
small 10x10 grids, we can easily figure out which grid it
was part of by binning it appropriately. We pick the value
in that grid (which is the cumulative value of this feature
point so far) add the value of how much this point will have
moved to, in the next frame by running a forward optical
flow and updating the belief net appropriately. We threshold
the total distance we expect a particular point to have moved
for us to make a confident prediction and then run a hough
transform to select the click point from the list of candidate
points which are above the set threshold. However, there
were a few problems during implementation where features
of the previous iterations were getting dropped off. If for
some reason, the video is stuck or good-features-to-track
does not return feature points that don’t satisfy our filter,
the cumulative distance so far would be dropped off. We
combat this problem by maintaining an angle net, similar to
the cumulative belief net. As and when a feature is picked,
we compute the angle it will have moved to, and store that
in the grid. As part of the update step in the algorithm we
check the current belief net value and compare it with the
expected bin computed by the use of the angle value of this
grid. If the value is lower than the current belief net value,
the belief net value is retained or moved to the appropri-
ate bin. This helps with solving that problem. Tuning the
threshold appropriately worked well for all 3 levels. Fig 15
shows the click for level 3



Figure 15. Click for Level 3

Future Distribution Permission
The author(s) of this report give permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

4. Conclusion

This paper describes a system for automatically
and effectively playing the Find Mii video game
using computer vision techniques.While face de-
tection seems like an intuitive tool to use for al-
most all these tasks, we found it to be inaccurate
and often times not as helpful as it would seem.
This may have been due to the strength of our
classier or the nature of Wii faces. We found that
avoiding use of a face detector when possible im-
proved our success rate. Additionally, we found
sparse optical flow and hough transform to be ex-
traordinarily useful tools.

References

[1] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60,
pp. 91–110, nov 2004.

[2] T. T. H. Bay and L. V. Gool, “Surf: Speeded up robust
features,” In ECCV, p. 404 417, 2006.

[3] P. Viola and M. Jones, “Robust real-time face de-
tection,” International Journal of Computer Vision,
vol. 57, pp. 137–154, 2004.

[4] S. B. Henry A. Rowley and T. Kanade, “Neural
network-based face detection,” Pattern Analysis and
Machine Intelligence, 1998.

[5] H. J. Seo and P. Milanfar, “Training-free, generic ob-
ject detection using locally adaptive regression ker-
nels,” in IEEE Trans. on Pattern Analysis and Machine
Intelligence, pp. 1688–1704, 2010.

[6] H. J. Seo and P. Milanfar, “Using local regression ker-
nels for statistical object detection,” in Proceedings of
IEEE International Conference on Image Processing
(ICIP), pp. 2380–2383, 2008.

[7] B. D. Lucas and T. Kanade, “An iterative image regis-
tration technique with an application to stereo vision,”
Proceedings of the 1981 DARPA Imaging Understand-
ing Workshop, 1981.

[8] J. Shi and C. Tomasi., “Good features to track,” 1994.

[9] R. O. Duda and P. E. Hart, “Use of the hough transfor-
mation to detect lines and curves in pictures,” Comm.
ACM, 15, 1, 1972.

[10] Multiple View Geometry in Computer Vision (2nd ed.).
Cambridge University Press, 2003.

[11] A. Vedaldi and B. Fulkerson, “Vlfeat: An open
and portable library of computer vision algorithms.”
http://www.vlfeat.org, 2008.

5. Contribution

1. Task4, Task 3 Task1– Allan Joshua

2. Task2, Task1, FaceDetection Haar Training –
Dylan Sinzaki.

Face detection was one of the tools which
seemed like an intuitive tool to use. Although
we have not explained about the details of that in
this document, we implemented it and learnt that
it was not as effective as the alternatives that we
came up with. We had the algorithms work with
the Face detector but the timings we achieved by
not using them were way better.


